STAT0041: Stochastic Calculus

Lecture 8 - Brownian Motion and Heat Semigroup

Lecturer: Weichen Zhao Fall 2024

Key concepts:

- Markov properties;
- Markov semigroup;
- Heat semigroup.

8.1 Markov properties of Brownian motion

We begin with a brief review of the Markov process.

Definition 8.1 (Markov process) Let $\{X_t : t \in \mathcal{T}\}\$ be a \mathscr{F}_t -adapted stochastic process on $(\Omega, \mathscr{F}, (\mathscr{F}_t), P)$ with state space (E, \mathscr{E}) , then followings are equivalent:

 (1) X is a Markov process;

(2) For all $A \in \mathscr{E}, s < t \in \mathcal{T}$,

$$
P(X_t \in A \mid \mathscr{F}_s) = P(X_t \in A \mid X_s);
$$

(3) (standard approximation procedure) For all bounded measurable function f on E, s $t \in \mathcal{T}$

$$
\mathbb{E}[f(X_t)|\mathscr{F}_s] = \mathbb{E}[f(X_t)|X_s] \quad a.s.
$$

Definition 8.2 (Transition function) Let (E, \mathscr{E}) be a state space, we say $p(s, x; t, A)$, s, $t \in$ $\mathcal{T}, x \in E, A \in \mathscr{E}$ is a transition function on $(E, \mathscr{E}), i f$

- (1) For fixed s, t, x, $p(s, x; t, \cdot)$ is probability measure on (E, \mathscr{E}) ;
- (2) For fixed s, t, A, $p(s, \cdot; t, A)$ is $\mathscr E$ -measurable function;
- (3) (Kolmogorov-Chapman equation) For any $s < t < u \in \mathcal{T}$, $x \in E$, $A \in \mathscr{E}$,

$$
p(s, x; u, A) = \int_{E} p(s, x; t, dy) \ p(t, y; u, A).
$$
 (8.1)

Further, if exist $p(t, x, A)$ satisfies for all $s \in \mathcal{T}$,

$$
p(s, x; s+t, A) = p(t, x, A),
$$

we say transition function p is time homogeneous.

It can be proved when certain conditions hold, there exists a family of transition function

$$
p(s, x; t, A) := P(X_t \in A | X_s = x)
$$

denote the probability of starting from x at time s and transferring to A at time t.

Theorem 8.3 Brownian motion is a Markov process with time homogeneous transition function

$$
p(t, x, y) = \frac{1}{(2\pi t)^{\frac{d}{2}}} e^{-\frac{|y - x|^2}{2t}}.
$$
\n(8.2)

8.2 Markov semigroup

For Markov process (X_t) with state space (E, \mathscr{E}) , define:

$$
(P_t f)(x) = \mathbb{E}[f(X_t)|X_0 = x] = \int f(y)p(t, x, y)dy.
$$

where

$$
P_t: \mathcal{M}_b(E) \to \mathcal{M}_b(E), \ f \mapsto P_t f
$$

where $\mathcal{M}_b(E)$ is the set of all bounded measurable function on E. Then P_t has semigroup property:

$$
P_{t+s}f = P_t \circ P_s f.
$$

We say (P_t) is a *Markov semigroup*. Recall that for discrete time homogeneous Markov Chains,

$$
P_t = (P_1)^t, \ t \in \mathbb{N}.
$$

Once we know initial state and one step transition matrix P_1 , the Markov chain is clearly defined. We also want to define a similar quantity for continuous time Markov process. Thus we introduce following definition.

Definition 8.4 (Infinitesimal generator) Let P_t be a operator semigroup,

$$
\mathcal{L}f := \lim_{t \downarrow 0} \frac{P_t f - f}{t}.\tag{8.3}
$$

We say $\mathcal L$ is the **infinitesimal generator** of P_t .¹

Proposition 8.5 (Kolmogorov forward/backward equation) For all $t \geq 0$, it holds that

$$
\partial_t P_t f = \mathcal{L} P_t f = P_t \mathcal{L} f.
$$

¹In order to guarantee the existence of the limit in (8.3), we need to consider $f \in \mathcal{D}(\mathcal{A}) := \{f \in$ $\mathcal{M}_b(E), \lim_{t\downarrow 0}$ $\frac{P_t f - f}{t}$ is exist}

8.3 Brownian motion and heat semigroup

Define

$$
K(t, x, y) = \frac{1}{(2\pi t)^{\frac{d}{2}}} e^{-\frac{|x - y|^2}{2t}}.
$$

We called $K(t, x, y)$ heat kernel because for a continuous and bounded function $f : \mathbb{R}^d \to \mathbb{R}$,

$$
u(x,t) = \int K(t,x,y)f(y)dy
$$

solves the heat equation

$$
\frac{1}{2}\Delta_x u(x,t) - \frac{\partial}{\partial t}u(x,t) = 0, \quad u(x,0) = f(x)
$$

Following proposition shows connection between Brownian motion and heat equation.

Proposition 8.6 Let (B_t) be a Brownian motion, then for all continuous and bounded function $f: \mathbb{R}^d \to \mathbb{R}$

$$
P_t f(x) := \mathbb{E}[f(B_t)|B_0 = x] = \int p(t, x, y) f(y) dy
$$
\n(8.4)

where

$$
p(t, x, y) = \frac{1}{(2\pi t)^{\frac{d}{2}}} e^{-\frac{|x - y|^2}{2t}}.
$$

Since $P_t f(x)$ satisfies

$$
\frac{\partial}{\partial t}P_t f(x) = \frac{1}{2} \Delta_x P_t f(x),
$$

operator semigroup P_t defined in (8.4) is called **heat semigroup**. And the infinitesimal generator of Brownian motion is Laplace $\frac{1}{2}\Delta$.